Within the first few weeks of operation, WEARwatcher builds up an extensive database on which it constantly recalculates the current probability of failure. These mathematical operations take place in the device itself, and the result is visualised as the probability of failure in the cloud dashboard.
Within the first few weeks of operation, WEARwatcher builds up an extensive database on which it constantly recalculates the current probability of failure. These mathematical operations take place in the device itself, and the result is visualised as the probability of failure in the cloud dashboard.
WEARwatcher is able to permanently monitor the traction capacity of the lift system. This means that critical operating conditions can be detected even before the next periodic inspection. Furthermore, comprehensive automatic trend algorithms reliably report incipient wear on traction sheaves and ropes, as well as forthcoming lubrication, contamination of the propellants with dirt, etc..
WEARwatcher is able to permanently monitor the traction capacity of the lift system. This means that critical operating conditions can be detected even before the next periodic inspection. Furthermore, comprehensive automatic trend algorithms reliably report incipient wear on traction sheaves and ropes, as well as forthcoming lubrication, contamination of the propellants with dirt, etc..
Through constant vibration and jerk analyses as well as frequency monitoring, certain aspects of the condition of the guide rails are recorded and reported in the event of a fault. This includes lack of lubrication, insufficiently machined rail joints, catch marks etc.. The position of these faults is recorded and reported with millimetre precision.
Through constant vibration and jerk analyses as well as frequency monitoring, certain aspects of the condition of the guide rails are recorded and reported in the event of a fault. This includes lack of lubrication, insufficiently machined rail joints, catch marks etc.. The position of these faults is recorded and reported with millimetre precision.
The vibration sensors of WEARwatcher are mounted on the car. In addition to that, WEARwatcher satellites can be used to monitor other parts of the installation (for example the machine frame) via vibration sensors. The analyses specifically searches for problems and signs of wear which affect the drive, the guides and the doors (distinguishing between shaft and car doors) and report them via the cloud.
The vibration sensors of WEARwatcher are mounted on the car. In addition to that, WEARwatcher satellites can be used to monitor other parts of the installation (for example the machine frame) via vibration sensors. The analyses specifically searches for problems and signs of wear which affect the drive, the guides and the doors (distinguishing between shaft and car doors) and report them via the cloud.
Many causes of wear and faults in the drive (such as problems with the frequency converter or in the gearbox, etc.) are transmitted to the car via the load-bearing equipment. There, the vibration sensors of WEARwatcher detect these faults and identifies the possible causes of the problem via extensive analyses, which are then visualised and reported via the cloud.
Many causes of wear and faults in the drive (such as problems with the frequency converter or in the gearbox, etc.) are transmitted to the car via the load-bearing equipment. There, the vibration sensors of WEARwatcher detect these faults and identifies the possible causes of the problem via extensive analyses, which are then visualised and reported via the cloud.
Every door movement is evaluated through extensive vibration and frequency analyses. This provides a picture of the condition of the door and, above all, of any incipient wear and/or dirt on guides and rollers. By means of an allocation of floors and subsequent trend analyses, WEARwatcher can specifically determine whether problems arise at certain car doors or landing doors and report these to the cloud.
Every door movement is evaluated through extensive vibration and frequency analyses. This provides a picture of the condition of the door and, above all, of any incipient wear and/or dirt on guides and rollers. By means of an allocation of floors and subsequent trend analyses, WEARwatcher can specifically determine whether problems arise at certain car doors or landing doors and report these to the cloud.
Every door movement is evaluated through extensive vibration and frequency analyses. This provides a picture of the condition of the door and, above all, of any incipient wear and/or dirt on guides and rollers. By means of an allocation of floors and subsequent trend analyses, WEARwatcher can specifically determine whether problems arise at certain car doors or landing doors and report these to the cloud.
Every door movement is evaluated through extensive vibration and frequency analyses. This provides a picture of the condition of the door and, above all, of any incipient wear and/or dirt on guides and rollers. By means of an allocation of floors and subsequent trend analyses, WEARwatcher can specifically determine whether problems arise at certain car doors or landing doors and report these to the cloud.
Sie müssen den Inhalt von reCAPTCHA laden, um das Formular abzuschicken. Bitte beachten Sie, dass dabei Daten mit Drittanbietern ausgetauscht werden.
Mehr Informationen