Skip to main content
Loher Str. 4 | D-58332 Schwelm | Germany | Phone +49 2336 9298 0

Condition Monitoring System for elevators

At a glance

  • Easy installation (< 30 min)
  • Breakdown Probability
  • Increase availability
  • Prevention of defects
  • Minimizing downtime
  • Precise predictable maintenance
  • Increasing the service life  of components
  • Control-system independent
  • Boost in service quality
  • Usage-based preventive maintenance
  • Automated reporting
  • Fault detection/availability
  • Cybersecurity

Smart Lift Monitoring 

  • Data for usage-based preventive maintenance 
  • Fault detection/system downtime (availability, etc.)
  • Wear detection through trend monitoring
  • Automated reporting at freely selectable intervals
  • Data-based recommendations for action
  • Data-based decision support for end customers
  • “Special reports” (forensics)

Optimized elevator maintenance

Statistics & Analysis

Features

Breakdown probability

Within the first few weeks of operation, WEARwatcher builds up an extensive database on which it constantly recalculates the current probability of failure. These mathematical operations take place in the device itself, and the result is visualised as the probability of failure in the cloud dashboard.

Duty Cycles

WEARwatcher continuously calculates the capacity utilisation of the system based on the lift rides wich take place. The actual travel time is set in relation to the total time (e.g. a value of 10% means that the lift actually runs for 6 minutes during one hour).

Ride distance

For each journey, the distance travelled is measured and displayed in the dashboard of the cloud. The total mileage is also calculated from this data.

Drive time

The actual duration of each ride is determined and stored in the database for further analysis.

Guides

Through constant vibration and jerk analyses as well as frequency monitoring, certain aspects of the condition of the guide rails are recorded and reported in the event of a fault. This includes lack of lubrication, insufficiently machined rail joints, catch marks etc.. The position of these faults is recorded and reported with millimetre precision.

Drive

Many causes of wear and faults in the drive (such as problems with the frequency converter or in the gearbox, etc.) are transmitted to the car via the load-bearing equipment. There, the vibration sensors of WEARwatcher detect these faults and identifies the possible causes of the problem via extensive analyses, which are then visualised and reported via the cloud.

Speed

For the constant speed part of each ride, the speed will be determined, monitored with limit values and shown in the cloud dashboard.

Ride Quality

The ride quality parameters of the system are calculated and weighted according to the requirements of ISO18738, so that an up-to-date ride quality assessment of the system will constantly be available and visualised.

Number of rides

The Cloud dashboard also provides a total trip counter.

Vibrations

The vibration sensors of WEARwatcher are mounted on the car. In addition to that, WEARwatcher satellites can be used to monitor other parts of the installation (for example the machine frame) via vibration sensors. The analyses specifically searches for problems and signs of wear which affect the drive, the guides and the doors (distinguishing between shaft and car doors) and report them via the cloud.

Car doors

Every door movement is evaluated through extensive vibration and frequency analyses. This provides a picture of the condition of the door and, above all, of any incipient wear and/or dirt on guides and rollers. By means of an allocation of floors and subsequent trend analyses, WEARwatcher can specifically determine whether problems arise at certain car doors or landing doors and report these to the cloud.

Hoistway doors

Every door movement is evaluated through extensive vibration and frequency analyses. This provides a picture of the condition of the door and, above all, of any incipient wear and/or dirt on guides and rollers. By means of an allocation of floors and subsequent trend analyses, WEARwatcher can specifically determine whether problems arise at certain car doors or landing doors and report these to the cloud.

Emergency stop analysis

WEARwatcher is able to permanently monitor the traction capacity of the lift system. This means that critical operating conditions can be detected even before the next periodic inspection. Furthermore, comprehensive automatic trend algorithms reliably report incipient wear on traction sheaves and ropes, as well as forthcoming lubrication, contamination of the propellants with dirt, etc..

I am interested in the WEARwatcher core